Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

3,5-Dimethyl-4-(2,4,6-trimethylphenyldiazenyl)phenol

Lynch and Byriel

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

[^0]Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

3,5-Dimethyl-4-(2,4,6-trimethylphenyldiazenyl)phenol

Daniel E. Lynch $^{\text {a }}$ and Karl A. Byriel ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Natural and Environmental Sciences, Coventry University, Coventry CV1 5FB, England, and ${ }^{\mathbf{b}}$ Department of Chemistry, The University of Queensland, Brisbane Q4072, Australia
Correspondence e-mail: apx106@coventry.ac.uk

Received 27 June 2000
Accepted 13 July 2000
Data validation number: IUC0000196
In the title compound, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$, (I), the dihedral angle between the two phenyl rings is 15.69 (6) ${ }^{\circ}$. An intermolecular hydrogen-bonding association exists between the hydroxy group and one of the azo N atoms.

(I)

Experimental

Crystals of the title compound were grown from ethyl acetate solution.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=268.35$
Monoclinic, $P 2_{1} / n$
$a=12.369$ (2) Å
$b=7.6809$ (3) \AA
$c=15.332$ (3) A
$\beta=101.842(9)^{\circ}$
$V=1425.6$ (4) \AA^{3}
$Z=4$
$D_{x}=1.250 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=6-14^{\circ}$
$\mu=0.078 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, red
$0.47 \times 0.47 \times 0.47 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract- $\quad \theta_{\max }=24.97^{\circ}$
ometer $\quad h=-5 \rightarrow 14$
$2 \theta / \omega$ scans
2679 measured reflections
2512 independent reflections
1717 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0632 P)^{2}\right. \\
& \quad+0.3065 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.005 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.127$
$S=1.034$
2512 reflections
209 parameters
H atoms treated by a mixture of independent and constrained refinement
$l=-18 \rightarrow 17$
3 standard reflections every 200 reflections intensity decay: none

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.87(3)$	$2.16(3)$	$2.985(2)$	$157(2)$

Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.
All H atoms were included in the refinement at calculated positions as riding models $(\mathrm{C}-\mathrm{H}=0.96 \AA)$, except for the hydroxy H atom, which was located in difference syntheses and whose positional and displacement parameters were refined.

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: Xtal3.2 (Hall et al., 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the Australian Research Council and The University of Queensland.

References

Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3. 2 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

